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Abstract—Most computer vision techniques rely on cameras which uniformly sample the 2D image plane. However, there exists a
class of applications for which the standard uniform 2D sampling of the image plane is sub-optimal. This class consists of applications
where the scene points of interest occupy the image plane sparsely (e.g., marker-based motion capture), and thus most pixels of the
2D camera sensor would be wasted. Recently, diffractive optics were used in conjunction with sparse (e.g., line) sensors to achieve
high-speed capture of such sparse scenes. One such approach, called “Diffraction Line Imaging”, relies on the use of diffraction
gratings to spread the point-spread-function (PSF) of scene points from a point to a color-coded shape (e.g., a horizontal line) whose
intersection with a line sensor enables point positioning. In this paper, we extend this approach for arbitrary diffractive optical elements
and arbitrary sampling of the sensor plane using a convolution-based image formation model. Sparse scenes are then recovered by
formulating a convolutional coding inverse problem that can resolve mixtures of diffraction PSFs without the use of multiple sensors,
extending the application of diffraction-based imaging to a new class of significantly denser scenes. For the case of a single-axis
diffraction grating, we provide an approach to determine the minimal required sensor sub-sampling for accurate scene recovery.
Compared to methods that use a speckle PSF from a narrow-band source or a diffuser-based PSF with a rolling shutter sensor, our
approach uses spectrally-coded PSFs from broad-band sources and allows arbitrary sensor sampling, respectively. We demonstrate
that the presented combination of the imaging approach and scene recovery method is well suited for high-speed marker based motion
capture and particle image velocimetry (PIV) over long periods.
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1 INTRODUCTION

D ESPITE significant advances in sensor technologies,
capturing high speed videos at high spatial resolution

remains a challenge. Even with sufficient SNR, the main
limitation is the bandwidth to read out, digitize, transfer,
and store a large volume of sensor data. Thus, most imaging
sensors sacrifice spatial resolution for temporal resolution,
or vice-versa. That said, there are several applications where
the fast moving scenes are sparse (Fig. 1). For example, retro-
reflective markers or LEDs for motion capture [1], [2], [3],
reflective particles for fluid velocimetry [4], [5], [6], [7], com-
bustible particles, the headlights and tail-lights of moving
vehicles, or the decorative lighting and street lamps viewed
from a fast moving vehicle [8], [9]. Using full-frame 2D
sensing for these scenes is overkill and limits the achievable
temporal resolution. This work addresses capturing sparse
scenes at high speeds (several kHz) with sensors that are
rated for only 30-120 Hz at full-frame resolutions.

One way to address this problem is to modify the
electronics and read-out circuitry of the sensors. Event
cameras [7], [10], [11] are designed to measure changes in
intensity at every pixel and transmit only “large” changes
to save bandwidth. But the sensors used in these cameras
typically have low spatial resolution and suffer from low fill-
factors due to the additional electronics needed at each pixel
[7]. Traditional image sensors, on the other hand, have high
fill-factors and can capture images at high frame rates by
specifying small regions of interest (ROIs). But these ROIs
are not guaranteed to capture the sparse points occurring
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Fig. 1. Many imaging scenarios involving detecting sparse sources, such
as the retro-reflective markers on a motion capture suit, tracer particles
suspended in fluid, the thermal reaction from sparklers, and night light
sources. In this work, we propose to recover images of such scenes at
high speeds through diffraction-based imaging.

anywhere in the field of view. Positional information of
motion capture scene markers can be facilitated by temporal
modulation of the markers [1], [2], [12], [13], but these
techniques are limited to specialized markers, and may
require synchronization.



Alternatively, imaging efficiency can be increased by
optically multiplexing the incident illumination and com-
putationally decoding an image of the scene. Engineering
the PSF of scene sources was used for 3D cellular-imaging
and tracking [14], [15], [16], [17], [18], [19], multi-color
localization [20], [21], and depth recovery [22], [23], [24]. For
high-speed capture, the incident light can be multiplexed
to recover the scene from a small number of sensor mea-
surements [25], [26], [27], [28], [29]. For example, Antipa et
al. [26] recover high-speed videos of the scene with the
help of a custom-fabricated diffuser placed in front of a
bare sensor. The diffuser produces a caustic pattern that
changes in response to the scene. By using a rolling-shutter
sensor, every row on the sensor samples the caustic at a
different time, and a video can therefore be recovered from
a sequence of row measurements. The optical setup does
not encode the entire scene all at once however; instead, the
setup effectively has a time-varying FOV that only captures
part of the scene. As such, in each frame, their method
misses the fast motion of individual points that lay outside
the time-varying FOV. Conversely, our method is designed
for sparse scenes and utilizes multiple fixed ROIs to recover
all scene points in each captured frame.

Weinberg et al. [27] recover images of sparse sources by
relying on a high-frequency speckle point spread function
(PSF) created on the image plane, and imaged once again
with a rolling-shutter sensor. The speckle PSF is created by
imaging narrow-band (single color) point sources through
a diffuser added at the pupil plane. While their method
requires specialized narrow-band sources, our approach
exploits broad-band (white) light sources.

Sheinin et al. [30] use a diffraction grating to spread
incident light. Their method creates a spectrally-dependant
PSF, where the point position encoding relies not only on
the PSF shape, but also relies on the PSF’s spectrum (color).
This method allows point position encoding using a line
sensor coupled with off-the-shelf diffraction gratings and
light sources. Diffraction gratings are easily available and
have been used for artistic effect [31], spectroscopy [32],
[33], multi-spectral sensing [34], [35], [36], [37], and rainbow
particle velocimetry [6]. But their work has three important
limitations: (a) they focus only on a line diffraction pattern,
(b) their reconstruction works for points that are very sparse
and fails in situations (e.g., points on a uniform grid) where
multiple scene points contribute different spectral intensities
to the same pixel, and (c) they require multiple cameras to
resolve the position of points reliably.

We extend the approach of Sheinin et al. [30] to ar-
bitrary diffraction patterns and arbitrary sensor sampling
of the sparse scene point distributions, while using only
a single camera. The image formation can be modeled as
a spatially invariant convolution of the diffraction pattern
and the sparse scene. The point-spread function (PSF) of
the diffraction pattern can be measured for any type of
scene point or source. The image can be acquired using
an arbitrary configuration of ROIs and is deconvolved by
enforcing sparsity. For the case of a single-axis diffrac-
tion grating yielding a ’rainbow streak’ PSF sampled with
horizontal ROIs, we derive an approach to minimize the
ROI configuration (and maximize frame rate) based on the
diffraction PSF. The convolutional model is then extended

to scenes with multiple spectra and the sparse scene is
estimated using a known dictionary of PSFs. In contrast to
Sheinin et al. [30], our approach produces images instead
of a list of 2D points, does not require any training data,
does not require multiple cameras, applies to more dense
scenes, and is not limited to line diffraction gratings/sensors
or particular sparse scene configurations.

We demonstrate our approach using examples in several
application domains, such as motion capture of fast moving
markers and particle image velocimetry (PIV). Our system
prototype is composed of just an off-the-shelf single-axis
or double axis diffraction grating mounted in front of a
single, ordinary 120 Hz camera that is capable of outputting
multiple horizontal ROIs. We use our prototype to accu-
rately capture high speed motions (kilo-hertz) like skipping
ropes, bullets from a toy gun, complex fluid vortices, and
even sparklers. Please see supplementary videos for better
visualizations. While we primarily demonstrate 2D position
estimates of the sparse scene points at high speeds, this
approach can be used with multiple cameras and standard
3D estimation pipelines.

2 CONVOLUTIONAL IMAGE FORMATION MODEL

A diffraction grating is a thin optical element that disperses
light as a function of wavelength. When illuminated with
a wide spectrum (e.g., white light), the periodic micro-
structure of a diffraction grating produces rainbow patterns,
similar to the effect that a prism has on light. Simple periodic
structures result in simple patterns that consist of lines, such
as the single rainbow streak or the rainbow-colored star (as
shown in Fig. 2[b]). In this section, we describe a convo-
lutional image formation model for a sparse scene when
viewed through such diffractive optics. Our model can
also support diffractive optical elements (DOEs), which can
produce almost any desired light distribution by carefully
designing the micro-structure of the optical element [38],
[39], [40].

Let δs denote the image of a single bright scene point
mapped to a single pixel s. Note that δs is an intensity-only
image of the point, where the intensity value at s can take
arbitrary values.1 If the scene consists of multiple points that
emit the same normalized spectrum of light, the resulting
image (Fig. 2[a]) is given by:

I =
∑
s

δs. (1)

When placed in front of a camera, the diffraction grat-
ing blurs the image with a rainbow-colored point spread
function (PSF). If s is the center of the frame, the result
of imaging δs is the PSF itself (Fig. 2[b]). When viewing
the scene through the diffraction grating with a plurality of
points, the image formation process can be modeled as a
convolution between I and the PSF hdiff

σ of the diffraction
grating:

Idiff
σ = I ∗ hdiff

σ , (2)

where σ represents the different color channels of a camera.
As shown in Fig. 2[c], the resulting “diffraction” image con-
sists of a superposition of multiple copies of the diffraction

1. Not to be confused with a Kronecker delta function.



PSF, shifted to the scene point positions and scaled by the
intensity of each point.

Capturing a full-frame video stream with a conventional
sensor at high frame rates is limited by bandwidth. Instead,
our approach is to recover a full frame image I from a sparse
set of measurements on the sensor, modeled as:

Isparse
σ = Wσ � Idiff

σ = Wσ �
(
I ∗ hdiff

σ

)
, (3)

where, the operator � denotes an element-wise Hadamard
product, and the matrix Wσ is a binary sampling matrix
with ones for sampled pixels and zeros otherwise. Note that
Wσ can vary per color channel σ, e.g., to encode the Bayer
color filter array associated with most cameras. Although
both Isparse

σ and I are represented here as having the same
size, the image Isparse

σ requires far less bandwidth since
Wσ is sparse, and only a small subset of camera pixels
are needed to populate Isparse

σ . For example, Fig. 2(c-d) sub-
samples 16 of 1542 rows, reducing the bandwidth of the
video stream by a factor of nearly 100.

3 RECOVERING THE SPARSE SCENE

We now seek to recover I from the sparsely sampled sensor
measurements Isparse

σ . Here, we assume that the system PSF
hdiff
σ is known, and acquired through a calibration proce-

dure described in Section 4.2. Image I encodes two pieces of
information about each scene point: intensity and position
on the image plane. Some of the applications discussed in
the paper, such as motion capture with markers and PIV, are
concerned with only the point positions. In this section, we
first provide a general method for recovering I, followed by
a theoretical discussion in Section 3.2 about the conditions
for which the approach can yield precise point positioning.

In the general case, a plurality of scene points yield a
mixture of point PSFs on the sensor. Coupled with image
noise, this makes a direct deconvolution of Eq. (3) an under-
determined problem. Therefore, the reconstruction is formu-
lated as an optimization:

argmin
I

1

2

∑
σ

∥∥∥Wσ �
(
I ∗ hdiff

σ

)
− Isparse

σ

∥∥∥2

2
+ γ ‖I‖1 , (4)

where, the first term is the data fidelity term, the second
term is a sparsity enforcing regularization term, and the
scalar γ controls the contribution of the regularizer. This
is a convex optimization problem commonly used by com-
pressed sensing methods [26], [27] and can be solved with
readily available software packages [41], [42]. Fig 2 shows
an example that illustrates the recovery process.

3.1 Extension to Multiple Spectra
We previously assumed that all scene points share the
same reflectance spectrum. This allows the image formation
model to be the convolution between an intensity-only
image and a diffraction PSF (see Eq. (2)). However, general
scenes can contain a variety of sources, each emitting or
reflecting a unique spectrum. We therefore extend our image
formation model to handle multiple spectra and generalize
the corresponding reconstruction procedure.

Suppose the reflectance spectrum of each scene point
can be described as a linear combination of K reflectance

*

(a) scene sources
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(c) diffraction image
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Fig. 2. Convolutional image formation and recovery. (a) An image of a
4×4 LED matrix captured using a standard 2D camera. (b) When imaged
through a double-axis diffraction grating (inset), a single LED’s point
spread function (PSF) has the shape of a rainbow-colored star spanning
a large part of the image domain. (c) The LED matrix of (a) is imaged
through the diffraction grating. The resulting image can be modeled as a
convolution of the standard 2D frame (a) with the individual LED PSF (b).
(d) The full 2D image is then sub-sampled by taking eight narrow slices
of size 2056×2 (marked by yellow lines) to yield this sub-sampled image.
(e) The image in (d) vertically stretched for visualization. (f) The sub-
sampled image is used along with the LED PSF to yield a reconstruction
of the full 2D frame.

spectra. For example, the scene shown in Fig. 3 contains
LEDs of four different colors, each having a unique spec-
trum. Let hdiff

σ,k denote the PSF of a scene point having
reflectance spectra k=1, 2, . . . ,K . Then the resulting sub-
sampled image can be modeled as

Isparse
σ = Wσ �

K∑
k=1

(
Ik ∗ hdiff

σ,k

)
. (5)

The image Ik denotes the contribution that spectrum k has
to the signal at every pixel. In other words, each camera
pixel can be dominated by a single spectrum coefficient k
(see Fig. 3) or be a mixture of several coefficients. We can
then reconstruct the signal by optimizing the following:

argmin
I1,··· ,IK

1

2

∑
σ

∥∥∥∥∥Wσ�
(

K∑
k=1

Ik ∗ hdiff
σ,k

)
−Isparse

σ

∥∥∥∥∥
2

2

+γ
K∑
k=1

‖Ik‖1 .

(6)
An experiment showing a scene having K= 4 sources with
measured PSFs in shown in Fig. 3.

3.2 Domain of Position Recoverability
The above reconstruction algorithm handles an arbitrary
sampling matrix, as well as an arbitrary PSF. However, not
all PSF and sampling matrix combinations yield the same
accuracy when recovering point positions from I. Below, we
discuss how the properties of the PSF constrain the sensor
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Fig. 3. Recovering sources of multiple spectra. (a) A scene with 16 LEDs
of four different colors is imaged using a double-axis diffraction grating.
(b) The 2D sensor plane is sampled using 14 two-pixel wide regions of
interest (ROIs) illustrated by the yellow horizontal lines. (c) Each LED
yields a star PSF in image (b) whose spectrum depends on the LED
color. A close-up of a single diffraction mode of the four scene PSF
spectra is shown on the right. (d) Scene recovery using Eq.(4) and a
single PSF. (e) Scene recovery using a dictionary of the four scene PSFs
with Eq. (6). Note that the single-dictionary recovery yields degraded
results, while using multiple dictionaries improves the recovery. A by
product of Eq. (6) are the individual coefficient weights of each PSF,
visualized using the appropriate LED colors on the right.

sampling choice, and describe an approach to determine
the recoverable point positions in the image domain for the
case of a single-axis diffraction grating PSF sampled with
horizontal ROIs.

Consider a scene containing a single point that maps to
pixel s. The point’s image plane position can be uniquely
recovered for an arbitrary PSF and sensor sampling matrix
over an image domain Ω, if there exists an injective function
f that maps the sampled and shifted PSF to its positional
value s in this domain:

f
(
Wσ �

[
δs ∗ hdiff

σ

])
� s, ∀s ∈ Ω. (7)

Fig. 4 illustrates various cases of the dependence of Ω
on the PSF and Wσ . Fig. 4[b-c] illustrate that, depending on
Wσ , the same PSF can yield an empty uniquely-recoverable
domain or a uniquely-recoverable domain that spans the
entire image plane. Specifically, the single pixel sampling
in Fig. 4[b] can yield point positioning with an ambiguity
of two horizontal pixels, while the line sampling shown in
Fig. 4[c] yields no horizontal or vertical position ambiguity.

We seek a PSF and Wσ that maximize the support of Ω.
This is a hard problem for a general PSF since Eq. (7) states
an implicit condition for defining Ω but does not provide a
method for computing it given the PSF and Wσ . 2

Now, we provide a method for computing Ω for the
special case of a thin single-axis rainbow-streak PSF and hor-
izontal ROIs. In a thin diffraction rainbow streak (Fig. 5[a]),
the camera response function can yield unique color channel
values per PSF row in response to the incident light spec-
trum. This means that a subset of the streak’s rows define
an injective function from the intensity-scaled color-channel
values at the individual row to the streak’s position.3 Let
hinj denote a binary image that indicates the non-zero PSF
pixels which belong to such ’injective’ rows (see Fig. 5[a]).
Given hinj, the recoverable domain can be estimated by
computing its image domain support using Wσ :

Ω ≈ {x | (Wσ ? h
inj)[x] > 0}, (8)

where ? denotes the correlation operator. Intuitively, Eq. (8)
computes the image pixels where a scene point’s PSF will
intersect at least one ROI with an injective PSF color.

Next, we describe how to compute hinj. Let r and c
denote the image row and column indices, respectively. Let
Wr

σ denote a sampling matrix having a single-row ROI at
row r. Now let Irσ denote the PSF image sampled at row r:

Irσ ≡Wr
σ � hdiff

σ . (9)

If the non-zero color channel values at row r of hdiff
σ are

injective and there are no reconstruction errors, we expect
that applying the reconstruction of Eq. (4) to Irσ would yield
Î=δscent , where scent is the frame’s center coordinate. Note
that we expect to get δscent for all the injective rows r. Let
ŝr denote the dominant pixel position by applying recovery
to Irσ , one for each r. In practice, the recovered point ŝr
may slightly deviate from scent due to noise. Finally, hinj is
defined as

hinj[r, c] =

{
1, if hdiff

int [r, c] > t and |ŝr−scent| < d,

0, otherwise,
(10)

where hdiff
int is an intensity image of the PSF, t is an intensity

threshold, and d is a pre-defined distance threshold (e.g.,
two pixels). See supplementary material for an illustration
of this process.

For multi-spectra scenes as in Section 3.1, we define the
recoverable domain as the image domain which guaran-
tees accurate recovery for a point belonging to any of the
possible K PSFs. Thus, the recoverable domain Ω is the
intersection of all the individual PSF domains Ωk which are
computed separately per PSF k using Eq. (8):

Ω = Ωhdiff
1
∩ Ωhdiff

2
... ∩ Ωhdiff

K
. (11)

2. The domain Ω can be found by exhaustively applying the recon-
struction algorithm of Eq (4) for all possible s shifts.

3. For an standard color camera with RGB channels, the rainbow
streak may not have unique RGB values and the ends of the visible
spectrum, where the camera’s response maps the deep blues and reds
to [0, 0, α] and [α, 0, 0], respectively.
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(b) three-pixel-wide streak & single pixel sampling

(c) three-pixel-wide streak & line sampling
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Fig. 4. Effect of PSF and sensor sampling on position recovery. The
image domain Ω for which point positions can be recovered uniquely
depends on the PSF and the sensor sampling matrix. (a) A vertical one-
pixel wide rainbow PSF sampled using a single camera pixel defines a
vertical recoverable domain with the same spatial support as the non-
zero PSF pixels. (b) By increasing the PSF width to three pixels, a single
pixel sampling can no longer determine s precisely anywhere in the
image domain. This is because the vertical (y-axis) position can still be
determined with certainty, but now a two pixel ambiguity exists in the
horizontal position. (c) Sampling the entire row resolves the horizontal
position ambiguity, showing that different Wσ yield different Ω for the
same PSF. (d) The PSF does not have to be a single rainbow line. In this
example, the PSF shift can be computed using the ratios between the
different RGB channels as in (a-c). However, here these measurement
are spatially separated across different columns of the sampling row.

3.3 Choosing Wσ using Horizontal Camera ROIs

Many machine vision cameras allow defining multiple re-
gions of interests (ROIs) for which to perform sensor read-
out. The output image is then a concatenation of the ROIs of
choice (see Fig. 2[c-d]). An ROI is defined as a rectangle
in the image plane. As most cameras perform readout
sequentially one row at a time, the capture speed usually
depends on the total number of rows in all the defined ROIs.

Given these hardware constraints, our sampling matrix
Wσ consists of multiple ROIs of size 2056×M , where M
is the vertical width of each ROI. The multiple ROIs are
repeated vertically with a pitch of P pixels. Thus the image
sub-sampling factor is P/M . Higher sub-sampling factors
result in faster frame rates.

Maximizing the sub-sampling factor requires maximiz-
ing P while minimizing M . This can be achieved by setting
M to its minimal allowable value (2 pixels for our cameras)
while finding the highest P = Pmax such that Ω covers
the entire image domain (field of view). As illustrated in

=

=

=

PSF PSF injective domain hinj

(a) first step: estimate the PSFs injective domain

hinj Wσ Ω

(b) second step: decrease ROI pitch until covers
the entire image domain

correlation

Fig. 5. Estimating the uniquely recoverable domain. Given a PSF and
a sensor sampling matrix Wσ , the image uniquely-recoverable domain
can be approximated by the following procedure: (a) First, estimate the
PSF’s injective pixel domain hinj. (b) Correlate hinj with Wσ to yield
Ω. In (b) we illustrate this process for choosing the ROIs’ pitch P for a
uniform horizontal sampling of the image plane.

Fig. 5[b], we find Pmax by first estimating the PSF’s injective
domain hinj as described in Section 3.2, and then using
Eq. (8) to search for the maximal pitch Pmax.

4 IMPLEMENTATION DETAILS

4.1 Hardware

Our prototype diffraction camera consists of an IDS UI-
3070CP-C-HQ Rev.2 color camera mounted with a Fujinon
1.5MP 9mm lens. Our camera was limited to eight vertical
ROIs. Therefore, we used eight ROIs in all high-speed
experiments. We used two types of diffraction gratings in
our experiments. For imaging emitters (e.g. LEDs), we used
a simple double-axis diffraction grating tilted at 45 degrees
(seen in Fig. 2[b]). For scenes with reflected light (motion
capture, PIV), we used a Thorlabs 50mm 300 grooves/mm
transmission grating (GT50-03). For motion capture, we
used 14mm retro-reflective markers [43] and retro-reflective
tape which were illuminated by an Advanced Illumination
white ring light (RL-S052120) placed in front of the camera.

In the PIV experiment, we illuminated the top of the
water tank with an Advanced Illumination spot light (SL-
S100150). The water in the tank was mixed with Cospheric
White Polyethylene Micro-spheres having a 1mm diameter
which were stirred with a INTLLAB Magnetic Stirrer set to
its maximum speed of 3000 RPMs.



4.2 System Calibration
We imaged a single scene point to acquire the PSFs needed
for the optimization in Eq. (4) and (6). In the motion
capture experiments, this amounted to imaging a single
marker, while a single or multiple LEDs were imaged for
experiments shown in Figs 2-3. In the PIV and sparklers
experiments, placing a single steady point in the scene was
impossible. Instead, we imaged a scene containing multiple
sparse points and cropped the PSF of a single well-separated
point. While generally the PSF may depend on depth, we
observed no significant depth-dependent change in the PSF
in our experiments. When using the double-axis diffraction
grating with a single point spectrum, we set P = 148 with
M = 2. For the single-axis 300 Grooves/mm diffraction
grating we applied the procedure described in Section 3.3
which yielded a pitch Pmax =70.

While this paper mainly illustrates the recovery of 2D
images at high frame rates from one camera, we also
use a stereo camera pair to evaluate the 3D positions of
markers. For extrinsic and intrinsic calibration of the stereo
pair in Fig. 6 we built a checkerboard pattern with retro-
reflective tape at the square’s corners (Fig. 6[b]). Since the
calibration does not require high-speed capture, the pattern
was imaged simultaneously by both stereo cameras in full-
frame mode. The checkerboard corners were extracted using
Eq. (4) and inputted to a standard calibration pipeline [44].

4.3 Optimization Details
We solved the optimization problem in Eqs (4) and (6) using
the SPORCO Python package [42], [45], [46]. We use a PGM
solver along with Additive Mask Simulation (AMS) bound-
ary handling technique to apply our sampling matrix Wσ

[47], [48]. The solver has a complexity of O(KN logN) per
iteration per frame, whereN andK are the number of frame
pixels and scene PSFs, respectively. We set γ=0.01 in Eq (4).
Recovering a single frame at full resolution and a maximum
of 1000 iterations takes approximately 60 seconds.

5 EXPERIMENTAL EVALUATION

We have conducted an extensive experimental evaluation of
our method. We showed that the method is readily appli-
cable in many scenarios including motion capture (Section
5.2) and PIV (Section 5.3). Our method’s output I is a sparse
representation, sometimes resulting in a single pixel with a
non-zero value per scene point, and thus hard to visualize.
Therefore, for better visualization, all figures show I ∗ hspot

σ

instead of I, where hspot
σ is a small kernel intended to

enlarge the recovered result.

5.1 Point Positioning Accuracy Experiment
We tested the accuracy of 3D marker positioning by plac-
ing four retro-reflective markers at known positions on a
calibration checkerboard pattern (see Fig. 6[a]). The marker-
checkerboard was then imaged by a diffraction-camera
stereo pair (see Fig. 6[c]) whose intrinsic and extrinsic pa-
rameters were pre-calibrated as described in Section 4.2.
The sensor sub-sampling factor was P/M = 70/2 = 35 in
this experiment. Both cameras were tilted by 90 degrees. We
captured several video streams of the marker-checkerboard

recovered marker
3D positions

27.72cm

1
8
.4

8
cm

(a) test checkerboard (b) calibration checkerboard

(c) stereo setup

(d) 3D view

Fig. 6. Testing marker positioning accuracy. (a) Four markers are placed
in known position on a planer object. (b) A retro-reflective 6x9 sym-
metric checkerboard pattern used for the system geometric calibration.
(c) The stereo setup used in the experiment. (d) A 3D view showing
the calibrated camera positions as well as the marker positions for a
single video frame. The mean absolute positioning error and standard
deviation in this experiment over multiple frames were 4mm and 4.3mm,
respectively.

moving around in the scene (see video in supplementary
material). The 2D positions of the four markers were re-
covered using our method (Fig. 6[d]) and were used to
triangulate their 3D positions in space. From the retrieved
3D marker positions we computed the four distances be-
tween the markers and compared them to the ground truth
distances (marked in yellow in Fig. 6[a]). The mean absolute
error for all distance measurements was computed over 100
frames was 4mm with a standard deviation of 4.3mm.

5.2 Motion Capture Experiments
We captured high-speed videos of an actor performing rope
skipping (see Fig. 7). The actor was performing a fast rope
skipping exercise, swinging the rope twice underneath his
feet on every jump. The rope was partially covered with
retro-reflective tape to enable the recovery of its position in
the frames. In Fig. 7(b), the actor’s suit was fitted with retro-
reflective tape instead of point markers. The reconstructed
frames show the actor’s skeleton outlined by the tape. The
capture speed in Fig. 7 was 1000FPS with a sub-sampling
factor of P/M = 70/12 = 5.8. Please see the supplementary
videos for additional results.

In Fig. 8 we capture the fast motion of darts fired from
a toy gun. The toy gun and darts are covered with retro-
reflective tape and markers for tracking. The gun is able to
fire 5 darts per second. Our reconstructed frames visualize
the fast dart trajectories. Here, the capturing speed was
1000FPS with a sub-sampling factor of P/M=70/2=35.



(a) rope skipping motion capture with point and curve markers

(b) rope skipping motion capture with curve markers

Fig. 7. High-speed motion capture. (a) An actor wearing a suit fitted with
retro-reflective markers performs “double unders” rope skipping, where
the rope is swung twice under the feet on every jump. The jump rope is
periodically marked with retro-reflective tape. Our system captures the
motion at 1000FPS. The middle subplot shows a single reconstructed
frame. The right subplot visualizes a 300ms time duration using 100
frames spaced 3ms apart (taking every third frame). Observe that the
actor completes a full rope revolution while being mid jump, followed by
an additional revolution completed before the next jump. (b) Our method
is not limited to points. The actor is fitted with retro-reflective tape which
outlines the actor’s skeleton. The middle and right subplot show two
frames belonging to the same rope revolution.

5.3 Particle image velocimetry

In Fig 9[a-b], the camera views a water tank seeded with
white 1mm-diameter micro-spheres. The water is stirred
using a magnetic stirrer set to its maximum speed of 3000
RPM. The tank was illuminated from above using a spot
illumination. Our camera captured a 2D projection of the
particles’ 3D flow at 1000FPS. Fig 9(c) shows an illustration
of the flow created in the tank by the stirrer (see supple-
mentary video). In our tank, the stirrer created an axial flow
whose motion can be described as: going from the stirrer,
to the sides of tank and returning back to the stirrer from
the top of the tank. Fig 9(d) shows a single recovered frame
from the high-speed video. Fig 9(e) shows the recovered
diffraction frame of Fig 9(d). The used ROIs are shown in
yellow. Observe the high density of the diffraction image.
Fig 9(f) shows a visualization of the flow for a time span
of 150ms. The visualization was created by superimposing
15 frames spaced 10 frames apart. We used an open-source

(a) motion-capture Nerf gun

(c) bullet flight reconstruction

(b) gun markers

Fig. 8. Capturing darts in flight. (a) A toy gun was fitted with retro-
reflective markers and tape. The gun’s plastic darts were also wrapped
with retro-reflective tape. The gun, able to fire five darts per second, is
imaged using our method at 1000 FPS. (b) The gun’s recovered retro-
reflective markers. (c) Bullet flight reconstruction. Each subplot shows a
superposition of multiple frames belonging to the trajectory of a single
(different) dart. The bullet positions in different frames is visualized using
a different color. Here we visualize the darts by superimposing every
seventh frame, which corresponds to a time interval of 7 milliseconds.
Notice that the retro-reflective tape added to the darts disturbs their
intended weight balance, thereby altering the dart’s intended ’straight
line’ trajectories.

PIV package to compute the 2D projected flow [49]. Fig 9(g)
shows the normalized flow computed using two frames
spaced 6ms apart which is consistent with the perceived
flow in the tank.

5.4 Comparison to Diffraction Line Imaging [30]
Our method extends diffraction line imaging to a whole new
class of scenes, e.g., where multiple sources are positioned
on the same column or row. Figs. 2 and 3 show examples
for sparse scenes where the scene sources overlap both hor-
izontally and vertically. Applying the method of Sheinin et
al. [30] fails in these cases (see Fig. 10[a-c]). Figs. 7 and
8 contain a mixture of retro-reflective point markers and
’curve’ markers made with retro-reflective tape. The curve
markers often yield horizontal overlap between themselves
or with other point markers. As seen in the figures, our
method is able to correctly resolve such frames. Finally,
the high point density in Fig. 9 yields multiple points in
almost all image columns and rows per frame, ubiquitously
breaking the assumption of Sheinin et al. [30] and causing
recovery to fail (see Fig. 10[d]). Nevertheless, Sheinin et
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(a) test water tank

(d) recovered particles

(e) recovered diffraction image

(f) flow visualization

(b) diffraction camera

(g) computed flow(c) tank flow illustration

Fig. 9. Particle image velocimetry setup. (a) A water tank seeded with
white diffuse PIV particles is placed on a magnetic stirrer. (b) The
particle flow is imaged using our diffraction camera at 1000FPS. (c) The
average stationary Axial flow created by the stirrer can be described as
looping from the stirrer, to the sides of the tank upward, and returning
from the tank’s center. (d) A single recovered camera frame. (e) A 2D
diffraction image, computed by the recovered I and the scene PSF.
(f) A visualization of the flow computed by superimposing 15 frames
spaced 10ms apart. (g) Normalized flow field from two frames spaced
6ms apart, computed using an open-source PIV package. Observe that
the computed average flow is consistent with the observed flow.

al. [30]’s method has the advantage of not assuming prior
knowledge of scene source spectra as well as a faster run
speed suitable for real-time operation.

6 ANALYSIS AND DISCUSSION

In this section we discuss how the design choices of our
system affect the overall system performance, the method’s
limitations and future work.

6.1 System Design Considerations
Our experiments show a trade-off between the different
choices of PSF, created by using different diffractive optics.
A single-axis diffraction grating is energy efficient since
most of the light’s power is concerted in a single diffraction
mode (i.e., the rainbow streak or line). But, the single-axis
PSF yields higher positioning uncertainty in the vertical
axis [30], and has a limited injective domain, which re-
duces the sub-sampling factor. Conversely, the “star” PSF
shown in Fig. 2 and Fig. 3 has a large spatial support and
contains rainbow streaks in both axis. It therefore provides
accurate localization in both spatial coordinates and enables

(d) PIV frame recovered using [30]

(a) a 4x4 LED grid (b) one column
recovery using [30]

(c) full grid
recovery using [30]

Fig. 10. Comparison to [30]. (a) Input scene. (b) The method in [30]
maps the intersection of vertical diffraction rainbow streak with hor-
izontal ROIs. Thus the method works as long as there are no two
point that share the same image row. (c) When imaging the full grid
of LEDs, the method of [30] fails to recover the grid points, even when
using multiple ROIs. (d) The high point density in the PIV experiment of
Fig. 9 yields multiple sources in each column and row of the captured
video frames. Hence, the method of [30] completely fails to recover the
source’s positions (yellow=ground truth, cyan=recovered positions).

high sensor sub-sampling factors, typically upwards of 100.
However, its spatial spread comes at the cost of light effi-
ciency, making it mostly useful for high-speed imaging of
relatively bright sources such as LEDs and car headlights.
Note that compared to methods that use a speckle PSF
from a narrow-band source [27] or a diffuser-based PSF [26],
in both the streak and star PSFs, the PSF color provides
an additional cue that can potentially relax the need for
generating spatially-sharp PSF features.

Diffraction-based imaging assumes sparsity in the scene
points or sources. As the scene becomes denser (Fig. 9),
a higher sensor sampling (lower sub-sampling factor) is
required for accurate point positioning, since it increases
the signal, making the optimization more robust to noise
and signal saturation. Our high-speed experiments were
limited to using 8 ROIs. We therefore decreased the sub-
sampling factor by increasing the width of each ROI while
still maintaining the desired capture speed.

Another notable design choice is sampling the scene
with fixed sensor ROIs versus the short inter-row delay of
a rolling shutter sensor [26], [27]. While using the rolling
shutter may provide very high-speed bursts of recovered
frames, such sampling does not support prolonged contin-
uous high-speed capture. This is because the delay between
two consecutive rolling shutter frames may be much longer
than the inter-row delay used for the high-speed bursts [26].
Thus, the maximum amount of very high-speed frames in
each burst is limited to the number of samples that ’fit’
a single rolling shutter frame. Conversely, our ROI-based
solution continuously outputs the video frames at high FPS
and therefore is optimized for the long captures required by
our applications.



6.2 Limitations and Future Work

Our method’s performance depends on the system’s hard-
ware components: camera, diffractive optics, and illumi-
nation source. In low SNRs, the resulting diffraction PSF
may not yield a uniform reconstruction accuracy across the
image domain. This is because the PSF may have a non-
uniform spectra intensity resulting in some wavelengths (or
PSF colors) having relatively low image intensity compared
to others. For example, the LED illumination used in our
motion-capture experiments decreases sharply between the
blue and green wavelengths. This causes artifacts in videos
with relatively low SNR (e.g., where the actor is far way from
the camera), that appear as low recovered signal at fixed-
location video columns (see supplementary video). Such
artifacts can be alleviated by using light sources with a more
uniform spectral power distribution, increasing the sub-
sampling factor, or by post processing the recovered videos
to compensate for the fixed-location low-signal regions.

Recent experimental cameras that allow an arbitrary
sampling of the sensor plane may yield higher performance
by designing more efficient sampling matrices [50]. Con-
versely, improved performance can be obtained by design-
ing custom diffractive optical elements that yield a PSF with
superior performance. For instance, the star PSF used here
can be improved by concentrating most of the energy in
just two diffraction modes (rainbow lines): one horizontal
and one vertical, with minimal energy along the rest of
the modes. Our system’s dynamic range is determined by
the dynamic range of the camera in our prototype (without
the grating). However, our system could potentially extend
the camera’s dynamic range similarity to prior methods
that use diffractive optics to yield HDR scenes [38], [51].
Finally, incorporating a learning-based component to po-
sition recovery may further improve point positioning by
learning to denoise the PSF-specific artifacts that result in
the reconstructed frames.

7 CONCLUSION

We have extended diffraction line imaging to handle an ar-
bitrary sensor sampling combined with an arbitrary diffrac-
tive element. Our system is easy to assemble, requiring just
a single diffractive optical element mounted in front of one
camera. Calibration is fast and straightforward, requiring a
single capture of the scene’s PSF. Our reconstruction algo-
rithm requires no prior data-set for training. In conclusion,
we believe our method has the potential to allow high-speed
capture of sparse scenes in various applications.
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